# Coordination Number Of Fcc

## Introduction

In the previous section, we identified that unit cells were the simplest repeating unit of a crystalline solid and examined the most basic unit cell, the primitive cubic unit cell. In this section, we continue by looking at two other unit cell types, the body-centered cubic and the face-centered cubic unit cells.

The face-centered cubic (fcc) has a coordination number of 12 and contains 4 atoms per unit cell. The body-centered cubic (bcc) has a coordination numberof 8 and contains 2 atoms per unit cell. The coordination number for BCC, SCC, and FCC are 8, 6 and 12 respectively as shown in the diagram. Answer verified by Toppr 26 Views Upvote (0). Fcc Coordination Number. Still have questions? Get your answers by asking now. Ask Question + 100. Join Yahoo Answers. Coordination number – the number of nearest neighbor atoms or ions surrounding an atom or ion. For FCC and HCP systems, the coordination number is 12. Number of equidistant neighbors from the atom in the center of the unit cell. BCC coordination number is therefore 8, as each cube corner atom is the nearest neighbor. HCP HCP is a closed-packed structure and therefore, by the same argument as that used for FCC, it has a coordination number of 12 (provided the c/a ratio shown in fig.

• Identify what defines a unit cell; distinguish between the three common cubic unit cell types and their characteristics.
Body-Centered Cubic CellsFace-Centered Cubic CellsSummary of Cubic Unit Cells

Key Concepts and Summary Glossary End of Section Exercises

We will focus on the three basic cubic unit cells: primitive cubic (from the previous section), body-centered cubic unit cell, and face-centered cubic unit cell—all of which are illustrated in Figure 1.

## Body-Centered Cubic Cells

Some metals crystallize in an arrangement that has a cubic unit cell with atoms at all of the corners and an atom in the center, as shown in Figure 2. This is called a body-centered cubic (BCC) solid. Atoms in the corners of a BCC unit cell do not contact each other but contact the atom in the center. A BCC unit cell contains two atoms: one-eighth of an atom at each of the eight corners (8 × [latex]frac{1}{8}[/latex] = 1 atom from the corners) plus one atom from the center. Any atom in this structure touches four atoms in the layer above it and four atoms in the layer below it. Thus, an atom in a BCC structure has a coordination number of eight.

Atoms in BCC arrangements are much more efficiently packed than in a simple cubic structure, occupying about 68% of the total volume. Isomorphous metals with a BCC structure include K, Ba, Cr, Mo, W, and Fe at room temperature. (Elements or compounds that crystallize with the same structure are said to be isomorphous.)

## Face-Centered Cubic Cells

Many other metals, such as aluminum, copper, and lead, crystallize in an arrangement that has a cubic unit cell with atoms at all of the corners and at the centers of each face, as illustrated in Figure 3. This arrangement is called a face-centered cubic (FCC) solid. A FCC unit cell contains four atoms: one-eighth of an atom at each of the eight corners (8 × [latex]frac{1}{8}[/latex] = 1 atom from the corners)) and one-half of an atom on each of the six faces (6 × [latex]frac{1}{2}[/latex] = 3 atoms from the corners) atoms from the faces). The atoms at the corners touch the atoms in the centers of the adjacent faces along the face diagonals of the cube. Because the atoms are on identical lattice points, they have identical environments.

Atoms in an FCC arrangement are packed as closely together as possible, with atoms occupying 74% of the volume. This structure is also called cubic closest packing (CCP). In CCP, there are three repeating layers of hexagonally arranged atoms. Each atom contacts six atoms in its own layer, three in the layer above, and three in the layer below. In this arrangement, each atom touches 12 near neighbors, and therefore has a coordination number of 12. The fact that FCC and CCP arrangements are equivalent may not be immediately obvious, but why they are actually the same structure is illustrated in Figure 4.

Because closer packing maximizes the overall attractions between atoms and minimizes the total intermolecular energy, the atoms in most metals pack in this manner.

## Coordination Numbers Unit Cell

Calculation of Atomic Radius and Density for Metals, Part 2
Calcium crystallizes in a face-centered cubic structure. The edge length of its unit cell is 558.8 pm.

(a) What is the atomic radius of Ca in this structure?

(b) Calculate the density of Ca.

Solution

(a) In an FCC structure, Ca atoms contact each other across the diagonal of the face, so the length of the diagonal is equal to four Ca atomic radii (d = 4r). Two adjacent edges and the diagonal of the face form a right triangle, with the length of each side equal to 558.8 pm and the length of the hypotenuse equal to four Ca atomic radii:

## Coordination Number Of Fcc Crystal Structure

a2 + a2 = d2 → (558.8 pm)2 + (558.5)2 = (4r)2

Solving this gives r = [latex]{frac{(558.8;text{pm})^2;+;(558.5;text{pm})^2}{16}}[/latex] = 197.6 pm fro a Ca radius.

## Coordination Number Of Fcc Structure

(b) Density is given by density = [latex]frac{text{mass}}{text{volume}}[/latex]. The density of calcium can be found by determining the density of its unit cell: for example, the mass contained within a unit cell divided by the volume of the unit cell. A face-centered Ca unit cell has one-eighth of an atom at each of the eight corners (8 × [latex]frac{1}{8}[/latex] = 1atom) and one-half of an atom on each of the six faces (6 × [latex]frac{1}{2}[/latex] = 3), for a total of four atoms in the unit cell.

The mass of the unit cell can be found by:

1 Ca unit cell × [latex]frac{4;text{Ca atoms}}{1;text{Ca unit cell}}[/latex] × [latex]frac{1;text{mol Ca}}{6.022;times;10^{23};text{Ca atoms}}[/latex] × [latex]frac{40.078;text{g}}{1;text{mol Ca}}[/latex] = 2.662 × 10-22 g

The volume of a Ca unit cell can be found by: (Note that the edge length was converted from pm to cm to get the usual volume units for density.) Then, the density of Ca = [latex]frac{2.662;times;10^{-22};text{g}}{1.745;times;10^{-22};text{cm}^{3}}[/latex] = 1.53 g/cm3

Silver crystallizes in an FCC structure. The edge length of its unit cell is 409 pm.

(a) What is the atomic radius of Ag in this structure?

One of the big selling points of Citrix is that we can start on premises and move into a cloud without impacting the user experience. It gives my internal IT team the ability to manage that experience across geographies and across borders. Does anyone know how to prevent Citrix Workspace from launching at startup? I've checked the preferences, and there doesn't appear to be any option for this. I've also done a cursory internet search which has revealed that many others have the same issue, but no obvious fix. If it's useful, I'm running version 18.12.0.36 (1812). HKEYCURRENTUSERSoftwareCitrixSplashscreen SplashscreenShown=1. This value is a string or REGSZ value. I have tested this procedure on Windows 10 v1809, Windows Server 2016 and Windows Server 2019 with Citrix Workspace App 1812. Try it out and silence that Citrix Workspace App! Citrix workspace startup.

(b) Calculate the density of Ag.

(a) 145 pm; (b) 10.5 g/cm3

## Summary of Cubic Unit Cells

 Primitive Cubic (PC) Body-Centered Cubic (BCC) Face-Centered Cubic (FCC) Atoms per unit cell 1 2 4 Coordination number 6 8 12 Atom radius (r) and cell length (l) 2r = l [latex]sqrt{3}[/latex] × l = 4r [latex]sqrt{2}[/latex] × l = 4r Packing efficiency 52 % 68 % 74 %

## Key Concepts and Summary

The structures of crystalline metals and simple ionic compounds can be described in terms of packing of spheres. Metal atoms can pack in primitive cubic, body-centered cubic, and face-centered cubic structures. Each packing has its own characteristics with respect to the volume occupied by the atoms and the closeness of the packing.

## Glossary

body-centered cubic (BCC) solid
crystalline structure that has a cubic unit cell with lattice points at the corners and in the center of the cell
body-centered cubic unit cell
simplest repeating unit of a body-centered cubic crystal; it is a cube containing lattice points at each corner and in the center of the cube
cubic closest packing (CCP)
crystalline structure in which planes of closely packed atoms or ions are stacked as a series of three alternating layers of different relative orientations (ABC) face-centered cubic (FCC) solid
crystalline structure consisting of a cubic unit cell with lattice points on the corners and in the center of each face
face-centered cubic unit cell
simplest repeating unit of a face-centered cubic crystal; it is a cube containing lattice points at each corner and in the center of each face
isomorphous
possessing the same crystalline structure

### Chemistry End of Section Exercises

1. What is the coordination number of a chromium atom in the body-centered cubic structure of chromium?
2. What is the coordination number of an aluminum atom in the face-centered cubic structure of aluminum?
3. Tungsten crystallizes in a body-centered cubic unit cell with an edge length of 3.165 Å.
1. What is the atomic radius of tungsten in this structure?
2. Calculate the density of tungsten.
4. Platinum (atomic radius = 1.38 Å) crystallizes in a cubic closely packed structure. Calculate the edge length of the face-centered cubic unit cell and the density of platinum.
5. Barium crystallizes in a body-centered cubic unit cell with an edge length of 5.025 Å
1. What is the atomic radius of barium in this structure?
2. Calculate the density of barium.
6. Aluminum (atomic radius = 1.43 Å) crystallizes in a cubic closely packed structure. Calculate the edge length of the face-centered cubic unit cell and the density of aluminum.
1. eight
2. twelve
3. (a) 1.370 Å; (b) 19.26 g/cm3
4. edge length: 3.903 Å; density: 21.79 g/cm3
5. (a) 2.176 Å; (b) 3.595 g/cm3
6. edge length: 4.045 Å; density: 2.709 g/cm3